Integrability of Multiple Trigonometric Series and Parseval′s Formula

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power-monotone Sequences and Integrability of Trigonometric Series

The theorem proved in this paper is a generalization of some results, concerning integrability of trigonometric series, due to R.P. Boas, L. Leindler, etc. This result can be considered as an example showing the utility of the notion of power-monotone sequences.

متن کامل

On Integrability of Functions Defined by Trigonometric Series

The goal of the present paper is to generalize two theorems of R.P. Boas Jr. pertaining to L (p > 1) integrability of Fourier series with nonnegative coefficients and weight x . In our improvement the weight x is replaced by a more general one, and the case p = 1 is also yielded. We also generalize an equivalence statement of Boas utilizing power-monotone sequences instead of {n}.

متن کامل

Uniqueness Questions for Multiple Trigonometric Series

We survey some recent results on the uniqueness questions on multiple trigonometric series. Two basic questions, one about series which converges to zero and the other about the series which converge to an integrable function, are asked for four modes of convergence: unrestricted rectangular convergence, spherical convergence, square convergence, and restricted rectangular convergence. We will ...

متن کامل

Uniqueness for spherically convergent multiple trigonometric series

In 1870 Cantor proved that representation of a function of one variable by a trigonometric series can be done in only one way. In 1996 Bourgain proved the same thing for spherical convergence and multiple trigonometric series. His proof involves injecting a lot of new ideas into the theory of uniqueness. We give here an exposition of Bourgain’s proof, specialized to the case of dimension 2. Our...

متن کامل

Rearrangements of Trigonometric Series and Trigonometric Polynomials

Abstract. The paper is related to the following question of P. L. Ul’yanov: is it true that for any 2π-periodic continuous function f there is a uniformly convergent rearrangement of its trigonometric Fourier series? In particular, we give an affirmative answer if the absolute values of Fourier coefficients of f decrease. Also, we study a problem how to choose m terms of a trigonometric polynom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1994

ISSN: 0022-247X

DOI: 10.1006/jmaa.1994.1293